Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568812

ABSTRACT

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Subject(s)
Cellular Senescence , Chromatin , Humans , Chromatin/metabolism , Cellular Senescence/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Transcription Factors/metabolism , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Oncogenes
2.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37221009

ABSTRACT

The rampant variability in codon bias existing between bacterial genomes is expected to interfere with horizontal gene transfer (HGT), a phenomenon that drives bacterial adaptation. However, delineating the constraints imposed by codon bias on functional integration of the transferred genes is complicated by multiple genomic and functional barriers controlling HGT, and by the dependence of the evolutionary outcomes of HGT on the host's environment. Here, we designed an experimental system in which codon composition of the transferred genes is the only variable triggering fitness change of the host. We replaced Escherichia coli's chromosomal folA gene encoding dihydrofolate reductase, an essential enzyme that constitutes a target for trimethoprim, with combinatorial libraries of synonymous codons of folA genes from trimethoprim-sensitive Listeria grayi and trimethoprim-resistant Neisseria sicca. The resulting populations underwent selection at a range of trimethoprim concentrations, and the ensuing changes in variant frequencies were used to infer the fitness effects of the individual combinations of codons. We found that when HGT causes overstabilization of the 5'-end mRNA, the fitness contribution of mRNA folding stability dominates over that of codon optimality. The 5'-end overstabilization can also lead to mRNA accumulation outside of the polysome, thus preventing the decay of the foreign transcripts despite the codon composition-driven reduction in translation efficiency. Importantly, the fitness effects of mRNA stability or codon optimality become apparent only at sub-lethal levels of trimethoprim individually tailored for each library, emphasizing the central role of the host's environment in shaping the codon bias compatibility of horizontally transferred genes.


Subject(s)
Anti-Bacterial Agents , Trimethoprim , Anti-Bacterial Agents/pharmacology , Codon , RNA, Messenger , Drug Resistance, Microbial/genetics , Trimethoprim/pharmacology
3.
Genome Biol Evol ; 13(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34132784

ABSTRACT

Pangenomes-the cumulative set of genes encoded by a population or species-arise from the interplay of horizontal gene transfer, drift, and selection. The balance of these forces in shaping pangenomes has been debated, and studies to date focused on ancient evolutionary time scales have suggested that pangenomes generally confer niche adaptation to their bacterial hosts. To shed light on pangenome evolution on shorter evolutionary time scales, we inferred the selective pressures acting on mobile genes within individual human microbiomes from 176 Fiji islanders. We mapped metagenomic sequence reads to a set of known mobile genes to identify single nucleotide variants (SNVs) and calculated population genetic metrics to infer deviations from a neutral evolutionary model. We found that mobile gene sequence evolution varied more by gene family than by human social attributes, such as household or village. Patterns of mobile gene sequence evolution could be qualitatively recapitulated with a simple evolutionary simulation without the need to invoke the adaptive value of mobile genes to either bacterial or human hosts. These results stand in contrast with the apparent adaptive value of pangenomes over longer evolutionary time scales. In general, the most highly mobile genes (i.e., those present in more distinct bacterial host genomes) tend to have higher metagenomic read coverage and an excess of low-frequency SNVs, consistent with their rapid spread across multiple bacterial species in the gut. However, a subset of mobile genes-including those involved in defense mechanisms and secondary metabolism-showed a contrasting signature of intermediate-frequency SNVs, indicating species-specific selective pressures or negative frequency-dependent selection on these genes. Together, our evolutionary models and population genetic data show that gene-specific selective pressures predominate over human or bacterial host-specific pressures during the relatively short time scales of a human lifetime.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Evolution, Molecular , Gastrointestinal Microbiome/genetics , Humans , Metagenome , Metagenomics/methods , Microbiota/genetics
4.
Biophys J ; 120(12): 2413-2424, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33932438

ABSTRACT

Every amino acid residue can influence a protein's overall stability, making stability highly susceptible to change throughout evolution. We consider the distribution of protein stabilities evolutionarily permittable under two previously reported protein fitness functions: flux dynamics and misfolding avoidance. We develop an evolutionary dynamics theory and find that it agrees better with an extensive protein stability data set for dihydrofolate reductase orthologs under the misfolding avoidance fitness function rather than the flux dynamics fitness function. Further investigation with ribonuclease H data demonstrates that not any misfolded state is avoided; rather, it is only the unfolded state. At the end, we discuss how our work pertains to the universal protein abundance-evolutionary rate correlation seen across organisms' proteomes. We derive a closed-form expression relating protein abundance to evolutionary rate that captures Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens experimental trends without fitted parameters.


Subject(s)
Evolution, Molecular , Saccharomyces cerevisiae , Humans , Protein Folding , Protein Stability , Protein Unfolding , Proteome
5.
Nat Ecol Evol ; 4(3): 437-452, 2020 03.
Article in English | MEDLINE | ID: mdl-32094541

ABSTRACT

Evolutionary dynamics in large asexual populations is strongly influenced by multiple competing beneficial lineages, most of which segregate at very low frequencies. However, technical barriers to tracking a large number of these rare lineages in bacterial populations have so far prevented a detailed elucidation of evolutionary dynamics. Here, we overcome this hurdle by developing a chromosomal-barcoding technique that allows simultaneous tracking of approximately 450,000 distinct lineages in Escherichia coli, which we use to test the effect of sub-inhibitory concentrations of common antibiotics on the evolutionary dynamics of low-frequency lineages. We find that populations lose lineage diversity at distinct rates that correspond to their antibiotic regimen. We also determine that some lineages have similar fates across independent experiments. By analysing the trajectory dynamics, we attribute the reproducible fates of these lineages to the presence of pre-existing beneficial mutations, and we demonstrate how the relative contribution of pre-existing and de novo mutations varies across drug regimens. Finally, we reproduce the observed lineage dynamics by simulations. Altogether, our results provide a valuable methodology for studying bacterial evolution as well as insights into evolution under sub-inhibitory antibiotic levels.


Subject(s)
Escherichia coli , Evolution, Molecular , Anti-Bacterial Agents , Mutation
6.
Bioessays ; 42(2): e1900169, 2020 02.
Article in English | MEDLINE | ID: mdl-31854021

ABSTRACT

How do common and rare genetic polymorphisms contribute to quantitative traits or disease risk and progression? Multiple human traits have been extensively characterized at the genomic level, revealing their complex genetic architecture. However, it is difficult to resolve the mechanisms by which specific variants contribute to a phenotype. Recently, analyses of variant effects on molecular traits have uncovered intermediate mechanisms that link sequence variation to phenotypic changes. Yet, these methods only capture a fraction of genetic contributions to phenotype. Here, in reviewing the field, it is proposed that complex traits can be understood by characterizing the dynamics of biochemical networks within living cells, and that the effects of genetic variation can be captured on these networks by using protein-protein interaction (PPI) methodologies. This synergy between PPI methodologies and the genetics of complex traits opens new avenues to investigate the molecular etiology of human diseases and to facilitate their prevention or treatment.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Protein Interaction Maps/genetics , Proteome/genetics , Animals , Genome-Wide Association Study/methods , Genomics/methods , Humans , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics
7.
Cells ; 8(8)2019 08 17.
Article in English | MEDLINE | ID: mdl-31426476

ABSTRACT

Interferon (IFN) ß and Tumor Necrosis Factor (TNF) are key players in immunity against viruses. Compelling evidence has shown that the antiviral and inflammatory transcriptional response induced by IFNß is reprogrammed by crosstalk with TNF. IFNß mainly induces interferon-stimulated genes by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway involving the canonical ISGF3 transcriptional complex, composed of STAT1, STAT2, and IRF9. The signaling pathways engaged downstream of the combination of IFNß and TNF remain elusive, but previous observations suggested the existence of a response independent of STAT1. Here, using genome-wide transcriptional analysis by RNASeq, we observed a broad antiviral and immunoregulatory response initiated in the absence of STAT1 upon IFNß and TNF costimulation. Additional stratification of this transcriptional response revealed that STAT2 and IRF9 mediate the expression of a wide spectrum of genes. While a subset of genes was regulated by the concerted action of STAT2 and IRF9, other gene sets were independently regulated by STAT2 or IRF9. Collectively, our data supports a model in which STAT2 and IRF9 act through non-canonical parallel pathways to regulate distinct pool of antiviral and immunoregulatory genes in conditions with elevated levels of both IFNß and TNF.


Subject(s)
Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-beta/physiology , STAT2 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/physiology , Vesicular Stomatitis/immunology , Vesicular stomatitis Indiana virus/immunology , A549 Cells , Humans
8.
Ann Neurol ; 86(2): 168-180, 2019 08.
Article in English | MEDLINE | ID: mdl-31177555

ABSTRACT

OBJECTIVE: Heightened somatic symptoms are reported by a wide range of patients with chronic pain and have been associated with emotional distress and physical dysfunction. Despite their clinical significance, molecular mechanisms leading to their manifestation are not understood. METHODS: We used an association study design based on a curated list of 3,295 single nucleotide polymorphisms mapped to 358 genes to test somatic symptoms reporting using the Pennebaker Inventory of Limbic Languidness questionnaire from a case-control cohort of orofacial pain (n = 1,607). A replication meta-analysis of 3 independent cohorts (n = 3,189) was followed by functional validation, including in silico molecular dynamics, in vitro enzyme assays, and measures of serotonin (5-HT) plasma concentration. RESULTS: An association with the T allele of rs11575542 coding for an arginine to glutamine substitution in the L-aromatic amino acid decarboxylase (AADC) enzyme was replicated in a meta-analysis of 3 independent cohorts. In a combined meta-analysis of all cohorts, this association reached p = 6.43 × 10-8 . In silico studies demonstrated that this substitution dramatically reduces the conformational dynamics of AADC, potentially lowering its binding capacity to a cofactor. in vitro enzymatic assays showed that this substitution reduces the maximum kinetic velocity of AADC, hence lowering 5-HT levels. Finally, plasma samples from 90 subjects showed correlation between low 5-HT levels and heightened somatic symptoms. INTERPRETATION: Using functional genomics approaches, we identified a polymorphism in the AADC enzyme that contributes to somatic symptoms through reduced levels of 5-HT. Our findings suggest a molecular mechanism underlying the pathophysiology of somatic symptoms and opens up new treatment options targeting the serotonergic system. ANN NEUROL 2019;86:168-180.


Subject(s)
Amino Acid Substitution/genetics , Aromatic-L-Amino-Acid Decarboxylases/genetics , Facial Pain/genetics , Genetic Association Studies/methods , Medically Unexplained Symptoms , Serotonin/genetics , Adolescent , Adult , Case-Control Studies , Facial Pain/diagnosis , Female , HEK293 Cells , Humans , Male , Middle Aged , Prospective Studies , Protein Structure, Secondary , Signal Transduction/genetics , Young Adult
9.
Bioinformatics ; 35(20): 4053-4062, 2019 10 15.
Article in English | MEDLINE | ID: mdl-30873519

ABSTRACT

MOTIVATION: Protein evolution is determined by forces at multiple levels of biological organization. Random mutations have an immediate effect on the biophysical properties, structure and function of proteins. These same mutations also affect the fitness of the organism. However, the evolutionary fate of mutations, whether they succeed to fixation or are purged, also depends on population size and dynamics. There is an emerging interest, both theoretically and experimentally, to integrate these two factors in protein evolution. Although there are several tools available for simulating protein evolution, most of them focus on either the biophysical or the population-level determinants, but not both. Hence, there is a need for a publicly available computational tool to explore both the effects of protein biophysics and population dynamics on protein evolution. RESULTS: To address this need, we developed SodaPop, a computational suite to simulate protein evolution in the context of the population dynamics of asexual populations. SodaPop accepts as input several fitness landscapes based on protein biochemistry or other user-defined fitness functions. The user can also provide as input experimental fitness landscapes derived from deep mutational scanning approaches or theoretical landscapes derived from physical force field estimates. Here, we demonstrate the broad utility of SodaPop with different applications describing the interplay of selection for protein properties and population dynamics. SodaPop is designed such that population geneticists can explore the influence of protein biochemistry on patterns of genetic variation, and that biochemists and biophysicists can explore the role of population size and demography on protein evolution. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available at https://github.com/louisgt/SodaPop under the GNU GPLv3 license. The software is implemented in C++ and supported on Linux, Mac OS/X and Windows. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Demography , Population Density
10.
Proteins ; 86(12): 1242-1250, 2018 12.
Article in English | MEDLINE | ID: mdl-30039542

ABSTRACT

The extent of nonadditive interaction among mutations or epistasis reflects the ruggedness of the fitness landscape, the mapping of genotype to reproductive fitness. In protein evolution, there is strong support for the importance and prevalence of epistasis but the quantitative and relative contribution of various factors to epistasis are poorly known. Here, we determine the contribution of selection for folding stability to epistasis in protein evolution. By combining theoretical estimates of the rates of molecular evolution and the nonlinear mapping between protein folding thermodynamics and fitness, we show that the simple selection for folding stability imposes at least ~30% to ~40% epistasis in long-term protein evolution. Estimating the contribution of governing factors in molecular evolution such as protein folding stability to epistasis will provide a better understanding of epistasis that could improve methods in molecular evolution.


Subject(s)
Epistasis, Genetic , Evolution, Molecular , Models, Biological , Proteins/chemistry , Proteins/genetics , Genetic Fitness , Mutation , Phenotype , Protein Folding , Protein Stability , Thermodynamics
11.
Mol Biol Evol ; 35(10): 2390-2400, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29955873

ABSTRACT

Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.


Subject(s)
Antibody Affinity , Biological Evolution , Genetic Fitness , Models, Genetic , Norovirus/genetics , Animals , Antibodies, Neutralizing , Capsid Proteins/physiology , Epistasis, Genetic , Mice , Protein Folding , Protein Stability , Selection, Genetic
12.
mSphere ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-29299534

ABSTRACT

Protein thermodynamics are an integral determinant of viral fitness and one of the major drivers of protein evolution. Mutations in the influenza A virus (IAV) hemagglutinin (HA) protein can eliminate neutralizing antibody binding to mediate escape from preexisting antiviral immunity. Prior research on the IAV nucleoprotein suggests that protein stability may constrain seasonal IAV evolution; however, the role of stability in shaping the evolutionary dynamics of the HA protein has not been explored. We used the full coding sequence of 9,797 H1N1pdm09 HA sequences and 16,716 human seasonal H3N2 HA sequences to computationally estimate relative changes in the thermal stability of the HA protein between 2009 and 2016. Phylogenetic methods were used to characterize how stability differences impacted the evolutionary dynamics of the virus. We found that pandemic H1N1 IAV strains split into two lineages that had different relative HA protein stabilities and that later variants were descended from the higher-stability lineage. Analysis of the mutations associated with the selective sweep of the higher-stability lineage found that they were characterized by the early appearance of highly stabilizing mutations, the earliest of which was not located in a known antigenic site. Experimental evidence further suggested that H1N1 HA stability may be correlated with in vitro virus production and infection. A similar analysis of H3N2 strains found that surviving lineages were also largely descended from viruses predicted to encode more-stable HA proteins. Our results suggest that HA protein stability likely plays a significant role in the persistence of different IAV lineages. IMPORTANCE One of the constraints on fast-evolving viruses, such as influenza virus, is protein stability, or how strongly the folded protein holds together. Despite the importance of this protein property, there has been limited investigation of the impact of the stability of the influenza virus hemagglutinin protein-the primary antibody target of the immune system-on its evolution. Using a combination of computational estimates of stability and experiments, our analysis found that viruses with more-stable hemagglutinin proteins were associated with long-term persistence in the population. There are two potential reasons for the observed persistence. One is that more-stable proteins tolerate destabilizing mutations that less-stable proteins could not, thus increasing opportunities for immune escape. The second is that greater stability increases the fitness of the virus through increased production of infectious particles. Further research on the relative importance of these mechanisms could help inform the annual influenza vaccine composition decision process.

13.
Sci Rep ; 7(1): 15844, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29158562

ABSTRACT

Epistasis or the non-additivity of mutational effects is a major force in protein evolution, but it has not been systematically quantified at the level of a proteome. Here, we estimated the extent of epistasis for 2,382 genes in E. coli using several hundreds of orthologs for each gene within the class Gammaproteobacteria. We found that the average epistasis is ~41% across genes in the proteome and that epistasis is stronger among highly expressed genes. This trend is quantitatively explained by the prevailing model of sequence evolution based on minimizing the fitness cost of protein unfolding and aggregation. The genes with the highest epistasis are also functionally involved in the maintenance of proteostasis, translation and central metabolism. In contrast, genes evolving with low epistasis mainly encode for membrane proteins and are involved in transport activity. Our results highlight the coupling between selection and epistasis in the long-term evolution of a proteome.


Subject(s)
Epistasis, Genetic , Evolution, Molecular , Genetic Fitness/genetics , Adaptation, Physiological/genetics , Escherichia coli/genetics , Mutation , Proteome/genetics , Selection, Genetic
14.
J Biol Chem ; 292(15): 6325-6338, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28235806

ABSTRACT

The ligase Itch plays major roles in signaling pathways by inducing ubiquitylation-dependent degradation of several substrates. Substrate recognition and binding are critical for the regulation of this reaction. Like closely related ligases, Itch can interact with proteins containing a PPXY motif via its WW domains. In addition to these WW domains, Itch possesses a proline-rich region (PRR) that has been shown to interact with several Src homology 3 (SH3) domain-containing proteins. We have previously established that despite the apparent surface uniformity and conserved fold of SH3 domains, they display different binding mechanisms and affinities for their interaction with the PRR of Itch. Here, we attempt to determine the molecular bases underlying the wide range of binding properties of the Itch PRR. Using pulldown assays combined with mass spectrometry analysis, we show that the Itch PRR preferentially forms complexes with endophilins, amphyphisins, and pacsins but can also target a variety of other SH3 domain-containing proteins. In addition, we map the binding sites of these proteins using a combination of PRR sub-sequences and mutants. We find that different SH3 domains target distinct proline-rich sequences overlapping significantly. We also structurally analyze these protein complexes using crystallography and molecular modeling. These structures depict the position of Itch PRR engaged in a 1:2 protein complex with ß-PIX and a 1:1 complex with the other SH3 domain-containing proteins. Taken together, these results reveal the binding preferences of the Itch PRR toward its most common SH3 domain-containing partners and demonstrate that the PRR region is sufficient for binding.


Subject(s)
Models, Molecular , Repressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , src Homology Domains , HEK293 Cells , Humans , Protein Binding/physiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Curr Opin Struct Biol ; 42: 31-40, 2017 02.
Article in English | MEDLINE | ID: mdl-27810574

ABSTRACT

Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology.


Subject(s)
Biophysics/methods , Evolution, Molecular , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Genetics, Population , Proteins/genetics
16.
Protein Sci ; 25(7): 1332-40, 2016 07.
Article in English | MEDLINE | ID: mdl-26939576

ABSTRACT

Viruses constantly face the selection pressure of antibodies, either from innate immune response of the host or from administered antibodies for treatment. We explore the interplay between the biophysical properties of viral proteins and the population and demographic variables in the viral escape. The demographic and population genetics aspect of the viral escape have been explored before; however one important assumption was the a priori distribution of fitness effects (DFE). Here, we relax this assumption by instead considering a realistic biophysics-based genotype-phenotype relationship for RNA viruses escaping antibodies stress. In this model the DFE is itself an evolvable property that depends on the genetic background (epistasis) and the distribution of biophysical effects of mutations, which is informed by biochemical experiments and theoretical calculations in protein engineering. We quantitatively explore in silico the viability of viral populations under antibodies pressure and derive the phase diagram that defines the fate of the virus population (extinction or escape from stress) in a range of viral mutation rates and antibodies concentrations. We find that viruses are most resistant to stress at an optimal mutation rate (OMR) determined by the competition between supply of beneficial mutation to facilitate escape from stressors and lethal mutagenesis caused by excess of destabilizing mutations. We then show the quantitative dependence of the OMR on genome length and viral burst size. We also recapitulate the experimental observation that viruses with longer genomes have smaller mutation rate per nucleotide.


Subject(s)
Mutation , RNA Viruses/physiology , Viral Proteins/genetics , Computer Simulation , Evolution, Molecular , Genetic Fitness , Models, Genetic , RNA Viruses/genetics , Stress, Physiological
17.
PLoS Genet ; 11(10): e1005612, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26484862

ABSTRACT

Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal/genetics , Phylogeny , Tetrahydrofolate Dehydrogenase/genetics , Amino Acid Sequence/genetics , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Homeostasis/genetics , Mutation , Species Specificity
18.
J Virol ; 89(15): 7722-34, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25972549

ABSTRACT

UNLABELLED: Human noroviruses (HuNoVs) are positive-sense RNA viruses that can cause severe, highly infectious gastroenteritis. HuNoV outbreaks are frequently associated with recombination between circulating strains. Strain genotyping and phylogenetic analyses show that noroviruses often recombine in a highly conserved region near the junction of the viral polyprotein (open reading frame 1 [ORF1]) and capsid (ORF2) genes and occasionally within the RNA-dependent RNA polymerase (RdRP) gene. Although genotyping methods are useful for tracking changes in circulating viral populations, they report only the dominant recombinant strains and do not elucidate the frequency or range of recombination events. Furthermore, the relatively low frequency of recombination in RNA viruses has limited studies to cell culture or in vitro systems, which do not reflect the complexities and selective pressures present in an infected organism. Using two murine norovirus (MNV) strains to model coinfection, we developed a microfluidic platform to amplify, detect, and recover individual recombinants following in vitro and in vivo coinfection. One-step reverse transcriptase PCR (RT-PCR) was performed in picoliter drops with primers that identified the wild-type and recombinant progenies and scanned for recombination breakpoints at ∼1-kb intervals. We detected recombination between MNV strains at multiple loci spanning the viral protease, RdRP, and capsid ORFs and isolated individual recombinant RNA genomes that were present at a frequency of 1/300,000 or higher. This study is the first to examine norovirus recombination following coinfection of an animal and suggests that the exchange of RNA among viral genomes in an infected host occurs in multiple locations and is an important driver of genetic diversity. IMPORTANCE: RNA viruses increase diversity and escape host immune barriers by genomic recombination. Studies using a number of viral systems indicate that recombination occurs via template switching by the virus-encoded RNA-dependent RNA polymerase (RdRP). However, factors that govern the frequency and positions of recombination in an infected organism remain largely unknown. This work leverages advances in the applied physics of drop-based microfluidics to isolate and sequence rare recombinants arising from the coinfection of mice with two distinct strains of murine norovirus. This study is the first to detect and analyze norovirus recombination in an animal model.


Subject(s)
Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/isolation & purification , Recombination, Genetic , Animals , Genetic Variation , Genotype , Humans , Mice , Microfluidics , Molecular Sequence Data , Norovirus/classification , Phylogeny
19.
Biophys J ; 108(4): 795-798, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25692584

ABSTRACT

It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software.


Subject(s)
Proteins/metabolism , Software , Thermodynamics , Protein Binding , Proteins/chemistry
20.
Genome Biol Evol ; 6(10): 2956-67, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25355808

ABSTRACT

Understanding the relative contributions of various evolutionary processes-purifying selection, neutral drift, and adaptation-is fundamental to evolutionary biology. A common metric to distinguish these processes is the ratio of nonsynonymous to synonymous substitutions (i.e., dN/dS) interpreted from the neutral theory as a null model. However, from biophysical considerations, mutations have non-negligible effects on the biophysical properties of proteins such as folding stability. In this work, we investigated how stability affects the rate of protein evolution in phylogenetic trees by using simulations that combine explicit protein sequences with associated stability changes. We first simulated myoglobin evolution in phylogenetic trees with a biophysically realistic approach that accounts for 3D structural information and estimates of changes in stability upon mutation. We then compared evolutionary rates inferred directly from simulation to those estimated using maximum-likelihood (ML) methods. We found that the dN/dS estimated by ML methods (ωML) is highly predictive of the per gene dN/dS inferred from the simulated phylogenetic trees. This agreement is strong in the regime of high stability where protein evolution is neutral. At low folding stabilities and under mutation-selection balance, we observe deviations from neutrality (per gene dN/dS > 1 and dN/dS < 1). We showed that although per gene dN/dS is robust to these deviations, ML tests for positive selection detect statistically significant per site dN/dS > 1. Altogether, we show how protein biophysics affects the dN/dS estimations and its subsequent interpretation. These results are important for improving the current approaches for detecting positive selection.


Subject(s)
Evolution, Molecular , Proteins/chemistry , Phylogeny , Protein Stability , Proteins/classification , Proteins/genetics , Selection, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...